Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2021

Simultaneous observations and combined effects of electromagnetic ion cyclotron waves and magnetosonic waves

Abstract Magnetosonic (MS) waves and Electromagnetic ion cyclotron (EMIC) waves are important plasma waves in the magnetosphere. Using the Van Allen Probes observations from 2012 to 2017, we constructed the global distribution of simultaneous occurrence of MS and EMIC waves. We found a total of 214 events, and the waves distribute from the noon sector to the duskside. Furthermore, we quantitatively analyze the combined effects of both waves on protons and electrons by calculating of particle diffusion coefficients and 2-D Fokker-Planck diffusion simulations. The simulation results show the combined effects of MS and EMIC waves. High-frequency EMIC waves and intense MS waves at low proton harmonics are essential for the enhanced proton acceleration at several hundred eV and enhanced electron loss at several MeV. Our results provide new sights into understanding the distribution of MS and EMIC waves and evaluating their combined effects on the evolution of energetic particles.

Teng, S.; Ma, Q.; Tao, X.;

Published by: Geophysical Research Letters      Published on: 08/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL093885

EMIC waves; MS waves; Wave-particle interaction; diffusion coefficients; Van Allen Probes

2017

Effects of whistler mode hiss waves in March 2013

We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution of 8 hours and 0.1 L-shell. Loss rates follow a complex dynamic structure, imposed by the wave and plasma properties. Hiss effects can be strong, with minimum lifetimes (of ~1 day) moving from energies of ~100 keV at L~5 up to ~2 MeV at L~2, and stop abruptly, similarly to the observed energy-dependent inner belt edge. Periods when the plasmasphere extends beyond L~5 favor long-lasting hiss losses from the outer belt. Such loss rates are embedded in a reduced Fokker-Planck code and validated against MagEIS observations of the belts at all energy. Results are complemented with a sensitivity study involving different radial diffusion and lifetime models. Validation is carried out globally at all L-shells and energies. The good agreement between simulations and observations demonstrates that hiss waves drive the slot formation during quiet times. Combined with transport, they sculpt the energy-structure of the outer belt into an "S-shape". Low energy electrons (<0.3 MeV) are less subject to hiss scattering below L=4. In contrast, 0.3-1.5 MeV electrons evolve in a environment that depopulates them as they migrate from L~5 to L~2.5. Ultra-relativistic electrons are not affected by hiss losses until L~2-3.

Ripoll, J.-F.; Santol?k, O.; Reeves, G.; Kurth, W.; Denton, M.; Loridan, V.; Thaller, S.; Kletzing, C.; Turner, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2017JA024139

diffusion coefficients; electron lifetimes; energy-structure; Radiation belts; Van Allen Probes; Whistler-mode hiss

2015

Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the 17 March 2013 storm

Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyroresonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the 17 March 2013 storm. We consider the Earth\textquoterights magnetic dipole field as a reference and compare the results against nondipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field (RAM-SCB), a code that models the Earth\textquoterights ring current and provides a realistic modeling of the Earth\textquoterights magnetic field. By applying quasi-linear theory, the bounce- and Magnetic Local Time (MLT)-averaged electron pitch angle, mixed-term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (\~1 MeV) and ring current (\~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyroresonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L=4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the 17 March 2013 storm and for L≲4.25, the commonly adopted dipole approximation of the Earth\textquoterights magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.

Zhao, Lei; Yu, Yiqun; Delzanno, Gian; Jordanova, Vania;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020858

diffusion coefficients; Radiation belt; ring current

Magnetic field power spectra and magnetic radial diffusion coefficients using CRRES magnetometer data

We used the fluxgate magnetometer data from Combined Release and Radiation Effects Satellite (CRRES) to estimate the power spectral density (PSD) of the compressional component of the geomagnetic field in the \~1 mHz to \~8 mHz range. We conclude that magnetic wave power is generally higher in the noon sector for quiet times with no significant difference between the dawn, dusk, and the midnight sectors. However, during high Kp activity, the noon sector is not necessarily dominant anymore. The magnetic PSDs have a very distinct dependence on Kp. In addition, the PSDs appear to have a weak dependence on McIlwain parameter L with power slightly increasing as L increases. The magnetic wave PSDs are used along with the Fei et al. (2006) formulation to compute inline image as a function of L and Kp. The L dependence of inline image is systematically studied and is shown to depend on Kp. More significantly, we conclude that inline imageis the dominant term driving radial diffusion, typically exceeding inline image by 1\textendash2 orders of magnitude.

Ali, Ashar; Elkington, Scot; Tu, Weichao; Ozeke, Louis; Chan, Anthony; Friedel, Reiner;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020419

CRRES; diffusion coefficients; radial diffusion; ULF waves



  1